Newsroom

Cancer researchers train white blood cells to attack tumour cells

vom 30.10.2020

Cancer researchers train white blood cells to attack tumour cells

Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training programme - be utilised for the treatment of tumours. In order to stimulate the training of this part of the innate immune system, the scientists used beta-glucan, a long-chain sugar molecule that occurs as a natural fibre mainly in the cell walls of fungi, oats or barley. The immune training already became effective at the level of blood formation in the bone marrow, in the precursor cells of the neutrophil granulocytes. Based on this newly described mechanism, it is possible that novel cancer immunotherapies which improve treatment for cancer patients will be developed in the future. The scientists published their results in the renowned specialist journal Cell.
The National Center for Tumor Diseases Dresden (NCT/UCC) is a joint institution of the German Cancer Research Center (DKFZ), the University Hospital Carl Gustav Carus Dresden, Carl Gustav Carus Faculty of Medicine at TU Dresden and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

Tumour cells can evade the immune system in a variety of ways and in this manner nullify its protective effect. Immunotherapies aim at preventing these evasive manoeuvers and at redirecting the natural defence mechanisms in the patient’s body against the cancer cells. Modern immunotherapies rely on the specialists of our defence system, such as T cells, dendritic cells or certain antibodies. As part of the specific immune system, these are able to recognise suitable structures on tumour or immune cells and initiate or execute a precisely tailored defence reaction. For the first time, scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and University Medicine Dresden were now able to demonstrate that even the non-specific immune response of our body can - through special training - be weaponised against tumours. “Based on the mechanism described, new forms of cancer immunotherapy are conceivable which could improve the chances for treatment for certain patients in the future,” says Prof. Triantafyllos Chavakis, Director of the Institute of Clinical Chemistry and Laboratory Medicine (IKL) of the University Hospital Carl Gustav Carus Dresden.

Training of neutrophil granulocytes inhibits tumour growth

At the centre of the described mechanism are special immune cells, so-called neutrophil granulocytes - or neutrophils for short. These form the most common subgroup of the white blood cells and are part of the innate, non-specific immune defence. In contrast to the specific part of our immune system - which first analyses foreign structures in the body in detail and then, with a time lag, activates tailor-made defence mechanisms - the non-specific part of the body’s own defence acts as a rapid response force: if pathogens enter the body or cells degenerate, it reacts very quickly and mostly stereotypically.

However, certain stimuli can also influence - or even train - the non-specific immune response. Training causes certain actors of the rapid response force to exhibit altered properties and perform their tasks better and over a longer period of time than before: the impact of the rapid response force increases. The researchers have now been able to demonstrate for the first time that this effect, which is already known to occur in infections, can also be used against tumours.

The neutrophil granulocytes play an important role in this process. In certain tumours, they accumulate in the environment of the tumour or migrate into it. These “tumour-associated neutrophils” - located directly at the tumour - can inhibit tumour growth, but some also have tumour-promoting properties. It is assumed that the tumour itself releases substances that turn the neutrophils into drivers of tumour growth. In experimental models, the scientists were able to partially reverse this process, which is detrimental to healing, by specially training the non-specific immune response. In order to stimulate the immune system, they used the long-chain sugar molecule (polysaccharide) beta-glucan. This is a natural fibre found mainly in the cell walls of fungi, oats or barley. Administrating beta-glucan caused the proportion of neutrophils with tumour-inhibiting properties to increase significantly and tumour growth to decrease.

Change in blood formation ensures long-term effect

Of particular importance in this context was proving that the reprogramming of neutrophil granulocytes already begins in the bone marrow. Here, from stem cells, various precursor cells develop and it is from these that the different blood cells emerge. The administration of beta-glucan altered the gene activity of the myeloid precursor cells. The neutrophils later also develop from these. “This causes the properties of the short-lived neutrophils to change in the longer term, towards activity directed against the tumour. This is because the precursor cells form neutrophils with tumour-inhibiting properties over a longer period of time,” explains joint first author Lydia Kalafati from IKL and NCT/UCC.  

As the next step, it would be conceivable to utilise the principle of neutrophil training in combination with already approved immunotherapies in cancer patients. “In doing so, we also want to investigate in which types of tumours the method works particularly well, in order to then use it in a very targeted manner in future,” says Prof. Martin Bornhäuser, member of the Managing Directorate of the NCT/UCC and Director of the Department of Medicine I of the University Hospital Dresden.

Publication:
Lydia Kalafati*, Ioannis Kourtzelis*,... Triantafyllos Chavakis: Innate immune training of granulopoiesis promotes anti-tumor activity,
https://www.cell.com/cell/fulltext/S0092-8674(20)31299-X
DOI:https://doi.org/10.1016/j.cell.2020.09.058

Press contact:
Dr. Anna Kraft
Nationales Centrum für Tumorerkrankungen Dresden (NCT/UCC)
Presse- und Öffentlichkeitsarbeit
Tel.: +49 (0)351 458-5548
E-mail: anna.kraft@nct-dresden.de
www.nct-dresden.de